Early Detection of Shock

Bryan E. Bledsoe, DO, FACEP, FAEMS
Professor
Emergency Medicine and Surgery (Trauma)
UNLV School of Medicine
Las Vegas, Nevada

Conflict of Interest Disclosure

- Bryan E. Bledsoe, DO, FACEP, FAEMS
 - No conflicts of interest to disclose

Shock

- A “rude unhinging” of the machinery of life.
 - Samuel Gross (1862)

- Shock is inadequate tissue perfusion.
 - A clinical state of acute circulatory failure with inadequate oxygen utilization and/or delivery to the cells resulting in cellular dysoxia/hypoxia.

- Shock is:
 - Cellular and tissue hypoxia:
 - Reduced oxygen delivery
 - Increased oxygen consumption
 - Inadequate oxygen utilization
 - Most commonly occurs due to circulatory failure.
 - Initially reversible if treatment provided rapidly to prevent progression to irreversible organ dysfunction.

Oxygen

Glucose
Shock

- Proteins
- Carbohydrates
- Lipids

Glucose

Shock

- Oxygen:
 - Required for the majority of cellular energy production derived from Krebs Cycle and Electron Transport Chain.
 - Metabolism with oxygen = aerobic metabolism
 - Metabolism without oxygen = anaerobic metabolism

Shock

- Oxygen Transport:
 - Hemoglobin-bound (97%)
 - Dissolved in plasma (3%)

- Monitoring:
 - Hemoglobin-bound (SpO2)
 - Dissolved in plasma (pO2)

Shock

- What factors can affect oxygen delivery to the tissues?
 - Cardiac Output (Q)
 - Available Hemoglobin (Hb)
 - Oxygen Saturation (SpO2)

Shock

- Metabolic oxygen demand (MRO2):
 - Sum total of oxygen needed to drive various tissue metabolic processes.

- Metabolic oxygen delivery (DO2):
 - Sum total of available oxygen delivery to the tissues.
 - Body approximately 20–30% effective in extracting circulating oxygen.
Shock

- Things that can adversely affect oxygen delivery:
 - Hypoxia
 - Inadequate circulation
 - Inadequate transport medium (e.g., hemoglobin)
 - Cellular toxins (e.g., cyanide)

When metabolic oxygen demands exceed oxygen supply:

- Elevated lactate levels MAY be an indicator of hemodynamic instability.
- Current lactate monitoring very non-specific.
- Numerous causes of elevated lactate levels—not all pathological.
Shock

- **Causes of Shock:**
 - Inadequate oxygen delivery:
 - Respiratory failure (mechanical, toxins)
 - Inadequate hemoglobin
 - Inadequate fluid in the vascular system
 - Impaired oxygen uptake
 - Biochemical poisoning (hydrogen cyanide)

- **Causes of Shock:**
 - Inadequate nutrient delivery:
 - Inadequate nutrient intake
 - Malnutrition, GI absorption disorder
 - Impaired nutrient (glucose) uptake:
 - Lack of insulin (Diabetes Mellitus)

- **Impaired oxygen uptake:**
 - Cyanide:
 - Inhibits metal-containing enzymes (i.e., cytochrome oxidase)
 - Carbon monoxide:
 - Binds to hemoglobin
 - Inhibits metal-containing enzymes (i.e., cytochrome oxidase)

- **Impaired oxygen uptake:**
 - Cyanide:
 - Inhibits metal-containing enzymes (i.e., cytochrome oxidase)
 - Carbon monoxide:
 - Binds to hemoglobin
 - Inhibits metal-containing enzymes (i.e., cytochrome oxidase)

- Shock types:
 - Hemorrhagic
 - Respiratory
 - Neurogenic
 - Psychogenic
 - Cardiogenic
 - Septic
 - Anaphylactic
 - Metabolic

- Shock is a singular condition with multiple causes.
Primary Shock Types:

- **Distributive (66%)**
 - Septic (42%)
 - Anaphylactic and neurogenic (4%)
- **Cardiogenic (16%)**
- **Hypovolemic (16%)**
- **Obstructive (2%)**

Distributive Shock:*
- Characterized by severe peripheral vasodilation.
- Often caused by molecules that mediate vasodilation.

Septic Shock (most common):
- Systemic inflammatory response syndrome (SIRS)
- Neurogenic shock
- Anaphylactic shock
- Drug and toxin-induced shock
- Endocrine shock

Cardiogenic Shock:
- Intracardiac cause of cardiac pump failure.
- Cardiomyopathic
- Arrhythmic
- Mechanical

Hypovolemic Shock:
- Reduced intravascular volume
- Hemorrhagic
- Non-hemorrhagic:
 - GI losses
 - Skin losses
 - Renal losses
 - Third-space losses

Obstructive Shock:
- Extracardiac issues cause cardiac pump failure (poor right ventricular output).
- Pulmonary vascular
- Pulmonary embolism
- Pulmonary hypertension
- Mechanical
- Tension pneumothorax
- Respiratory taponade
- Combined

Obstructive Shock:
- Pulmonary vascular:
 - Pulmonary embolism
 - Pulmonary hypertension
- Mechanical:
 - Tension pneumothorax
 - Respiratory taponade
 - Combined

The pathway to shock follows a common metabolic pattern.
Shock

- Stages of shock:
 - Pre-shock (compensated)
 - Shock (decompensated)
 - End-organ dysfunction (irreversible)

Pre-shock -> Shock -> End-organ dysfunction

Shock (Compensated): The body’s compensatory mechanisms are able to maintain some degree of tissue perfusion.

Shock (Decompensated): The body’s compensatory mechanisms fail to maintain tissue perfusion (blood pressure falls).

Irreversible (End-organ Dysfunction): Tissue and cellular damage is so severe that the organism dies even if perfusion is restored.

<table>
<thead>
<tr>
<th>Organs/Tissues</th>
<th>Compensated Shock</th>
<th>Decompensated Shock</th>
<th>Irreversible Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>Tachycardia</td>
<td>Acute respiratory failure</td>
<td>Hypoxic/ischemic injury</td>
</tr>
<tr>
<td>Lungs</td>
<td>Tachypnea, increased work of breathing</td>
<td>Acute respiratory failure</td>
<td>Hypoxic/ischemic injury with cell necrosis</td>
</tr>
<tr>
<td>Kidneys</td>
<td>Oliguria</td>
<td>ATN, ARF</td>
<td>Tubular necrosis</td>
</tr>
<tr>
<td>GI</td>
<td>Nausea, vomiting, stress gastritis</td>
<td>Pancreatitis, acute cholecystitis, GI bleed</td>
<td>Gastric necrosis, shock liver</td>
</tr>
<tr>
<td>Liver</td>
<td>Transaminitis, centrilobular injury</td>
<td>Centrilobular necrosis, shock liver</td>
<td>Hepatic failure</td>
</tr>
<tr>
<td>Neurologic</td>
<td>Encephalopathy and patient agitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autonomic</td>
<td>Glycogenolysis, glycosgen storage, lipolysis, proteolysis</td>
<td>Glycogen depletion, hypoglycemia</td>
<td>Hypercalcemia</td>
</tr>
</tbody>
</table>

Blood loss (mL)	Up to 750	750 - 1,500	1,500 - 2,000	> 2,000
Blood loss (% volume)	Up to 11	15 - 30	30 - 40	> 40
Pulse rate	< 100	100 - 120	120 - 140	> 140
Blood pressure	Normal	Decreased	Decreased	Decreased
Respiratory rate	14 - 20	20 - 30	30 - 40	> 35
Urine output (ml/hr)	> 30	20 - 30	5 - 15	Negligible
CNS/mental status	Slightly anxious	Moderately anxious	Confused	Lethargic

Shock recognition must occur at several levels:
- Examination
- Monitoring technologies
- Response to treatments
- Experience

ITLS Primary Survey:
- Scene size-up
- Initial assessment
- Rapid trauma survey or focused exam.

ITLS Secondary Survey

ITLS Ongoing Exam
Shock

What is the first physiological factor in the development of shock?
- VO₂ < MRO₂

So, what are the first symptoms you would expect to find?
- ↑ respiratory rate
- ↑ heart rate

What is often the second physiological response to the development of shock?
- Peripheral vasoconstriction

What symptoms would you expect to see?
- Pale skin
- Cool skin
- Weakened peripheral pulses

As shock progresses, what physiological effects are seen?
- End-organ perfusion falls

What symptoms would you expect to see?
- Altered mental status
- Decreased urine output

As compensatory mechanisms fully engage, what signs and symptoms would you expect to see?
- Tachycardia
- Tachypnea
- Pupillary dilation
- Decreased capillary refill
- Pale cool skin

When compensatory mechanisms fail, what signs and symptoms would you expect to see?
- Hypotension
- Falling SpO₂
- Bradycardia
- Loss of consciousness
- Dysrhythmias
- Death

Technology:
- ECG
- Oximetry
- Capnography
- POC testing
- Lactate
- Glucose
- Non-invasive hemoglobin
- SpO₂
- Sats

Technology:
- ECG
- Oximetry
- Capnography
- POC testing
- Lactate
- Glucose
- Non-invasive hemoglobin
- SpO₂
- Sats
Shock

- **Response to treatment:**
 - Fluid responsiveness:
 - Fluid responsiveness is an increase of stroke volume of 10-15% after the patient receives 500 ml of crystalloid over 10-15 minutes.
 - Indicates preload reserve
 - Does not mean that patient needs fluid.
 - Responders are those that demonstrate physiological improvements.
 - Transient responders show an initial improvement followed by further physiological deterioration.
 - Non-responders show continued physiological deterioration despite initial fluid resuscitation.
 - Responders are those that demonstrate physiological improvements.

- **Experience:**
 - Medicine is very much pattern recognition.
 - The more patterns a provider is exposed to, the easier it is to recognize the pattern.
 - ITLS and other standardized trauma courses are designed to improve knowledge of trauma care.
 - Experience comes from patient contact and management.

- **Pornography:**
 - "I know it when I see it."
 - US Supreme Court Justice Potter Stewart (1964)

- **Shock:**
 - "I know it when I see it."
 - Every one of us!!!

- **Early recognition of shock and subsequent treatment is important in patient survival.**
 - Shock recognition:
 - Examination
 - Monitoring technologies
 - Response to treatments
 - Experience
 - You cannot treat shock until you recognize the problem!
Shock