Pediatric Trauma Life Support
For Prehospital Care Providers

Ann Marie Dietrich, MD, FACEP, FAAP
Steven Shaner, EMT-P
Ohio Chapter
American College of Emergency Physicians

John Campbell, MD, FACEP, Editor

3rd Edition Update - 2017
FORWARD TO THE UPDATE

Trauma remains the major cause of death for children in developed countries and a leading cause of death in the developing world. Appropriate care of the injured child can greatly reduce the morbidity and mortality in this vulnerable population. Your commitment to improving pediatric trauma care, as evidenced by your giving of your time to participate in this course, is greatly appreciated. The authors and editors of the Pediatric Trauma Life Support (PTLS) course have gathered the most recent information in the field management of the pediatric trauma patient and collated this into this document along with updated references. As you will see, certain areas remain controversial, especially in contrast to management of the adult trauma patient. We recommend you periodically visit the ITLS website, www.itrauma.org, for updated information.

Thank you for what you do.

Ann Dietrich, MD, FACEP, FAAP
Editor, Pediatric Trauma Life Support for Prehospital Care Providers

Roy L. Alson, PhD, MD, FACEP
Editor, International Trauma Life Support for Emergency Care Providers

Definition
For this course and book, a pediatric patient is defined as one who is able to be assessed using a length based tape system (LBTS) (such as the Broselow® or SMART Tape® or similar). Patients who are longer than the tape are physiologically “adults” and should be managed using the ITLS adult trauma guidelines.
CHAPTER 1

The Injured Child

An injured child presents unique challenges, based on changing anatomy, physiology and psychology. In addition, emotional impact on the emergency medical responder (EMR) can have further impact on the child’s care. Since the release of the 3rd edition of the Pediatric Trauma Life Support (PTLS) manual and course, there has been an increase in the number of incidents involving penetrating injuries to children, both from conflicts and criminal events. There has also been a rise in bombings from terrorist events. EMRs should be familiar with the mass casualty guidelines for their jurisdiction.

UPDATES

Mechanism of Injury
The mechanism of injury in children is 80-90% blunt trauma and 10-20% penetrating. Blunt mechanical force may result in penetrating injury from fender edges, door handles, shrapnel, etc.

Motor Vehicle Collisions
In children ages 5 to 19 years: Injuries from motor vehicle collisions are the top cause of death from injury.

Suffocation
Toddlers are most at risk from suffocating by choking on food or other small objects.

Drowning
Drowning is the most common cause of death from injury in children ages 1 to 4 years. Note that compression-only CPR is not as effective in the drowning victim and that ventilation is a key component of the resuscitation of the drowning victim.

Poisoning
Each day, more than 300 children ages 0 to 19 years in the United States go to emergency departments because of poisoning. Common sources of poisoning include household chemicals, cleaners, and medicines.

Burns
Younger children are more likely to be burned by hot liquids or steam. Older children are more likely to be burned from direct contact with fire.

Falls
Falls are the most common cause of nonfatal injuries for children ages 0 to 19 years. Anatomic differences in body habitus as the child ages will change the body’s point of impact.
REFERENCES

CHAPTER 2 & 3

Assessment of the Pediatric Trauma Patient

The basic components in the assessment of the injured pediatric patient remain unchanged. By using a standardized approach for each patient, you reduce the risk of missing key findings. The sequence that should be followed is:

• ITLS Primary Survey
 – Scene Size-Up
 – Initial Assessment
 – Mechanism of Injury
 • Rapid Trauma Survey or Focused Exam
 – Critical Transport Decision and Interventions
• ITLS Ongoing Exam
• ITLS Secondary Survey

Remember that the assessment of the event begins during response, based on the information provided. Keep in mind that based on the MOI, the injury patterns seen in the pediatric patient will vary with age.

UPDATES

Preparation
Instead of a brand name, the term has been changed to “length based color coded tape”. Use a LBCCT, but also use common sense!

ITLS Primary Survey
Airway loss remains the primary cause of correctable trauma arrest in children. Exsanguinating bleeding is much less common in this age group. For most pediatric blunt trauma, the ABC sequence should be followed as opposed to the CABC sequence recommended by ITLS for adult patients.

Spinal motion restriction (SMR) is still advised in children. There is no research to discontinue the use of SMR in pediatric patients. Larger, heavier heads and the possibility of SCIWORA have made pediatric trauma centers continue to advocate for SMR along with appropriate spinal clearance protocols. Based on age, assessment of spinal injury in children can be a challenge. Note that pediatric trauma centers try to remove the “transport device” (i.e., backboard) as soon as possible after assessment. As more information becomes available, ITLS will provide updated guidelines on SMR in pediatric patients.
Patient Assessment Algorithm

The order of the ITLS patient assessment has changed to:

1. PTLS Primary Survey
2. ITLS Ongoing Exam
3. PTLS Secondary Survey

The ITLS Ongoing Exam is more common and may replace a Pediatric Secondary Survey. Note that the ITLS Ongoing Exam should be performed any time there is an intervention or change in patient status and with short transport times, as the EMR may not have time to perform the full Pediatric Secondary Survey.

Serum Lactate

Serum lactate is a marker of tissue hypoxia. It has been used in the field on adult patients to help predict those patients with normal vital signs that may have occult internal injury. It is not well studied in pediatrics. There is some evidence to suggest that a lactate level over 4.7 is associated with severe injury but lacks adequate sensitivity or specificity. Lactate levels under 2.0 are reassuring for absence of severe injury, and levels between 2.0 and 4.7 are indeterminate in predictive potential for injury or outcomes.

REFERENCES

Knight, J.C., M. Nazim, D. Riggs, J. Channel, C. Mullet, R. Vaughn et al. “Is The Broselow Tape A Reliable Indicator For Use In All Pediatric Trauma Patients? A Look At A Rural Trauma Center.” *Pediatric Emergency Care* 27, no. 6 (June 2011): 479-482.

CHAPTER 4 & 6

The Pediatric Airway & Airway Management and Thoracic Trauma Skills

Adequate ventilation and oxygenation are critical to the management of the pediatric trauma patient. The size of the pediatric airway and the lack of experience of EMRs increases the challenge in the unstable patient. Regular training in the management of the pediatric airway will improve outcomes.

UPDATES

Two major changes in the management of the pediatric airway are:

1. Use of cuffed tubes as the first choice for endotracheal intubation in all pediatric patients.
2. The Sellick maneuver, in which gentle pressure is applied to the cricoid cartilage to prevent regurgitation, has been shown to be ineffective and is no longer recommended. EMRs can decrease incidence of regurgitation by proper ventilation with the bag-valve-mask, and not using excessive pressures or volumes.

In thoracic trauma, the flexible ribs of younger children decreases risk of flail segments. With the rise of penetrating trauma due to war, terrorism and gun violence, the risk of both open and tension pneumothoraces has increased. Be aware that the large needles used in adults for chest decompression may cause injury if inserted fully in young children.

REFERENCES

CHAPTER 7
Pediatric Shock and Fluid Resuscitation

UPDATES

Tourniquet Use for Uncontrolled Extremity Bleeding
In adult trauma, data from combat casualties has led to a revision of the ABC approach to CABC, where the first “C” represents controlling life-threatening bleeding. In this situation, tourniquet application is life-saving. Such bleeding should be obvious to the EMR on approach. Most pediatric trauma is blunt, with early deaths associated with loss of airway and internal bleeding (non-compressible hemorrhage). The airway is always the first priority in the pediatric patient.

Tranexamic Acid (TXA)
Tranexamic acid (TXA) is recommended for treating life-threatening hemorrhage in adults. Few studies deal with the use of TXA in the civilian pediatric population. In the Ped-Trax study, dealing with combat type wounds in children, TXA was noted to have some mortality benefit but there is not enough evidence at this time to recommend universal use of TXA. Use should be based upon a decision by medical direction.

REFERENCES

CHAPTER 9
Pediatric Abdominal Trauma

There are no major changes in the approach and management of abdominal trauma in the pediatric patient. Remember that presentation of shock in a pediatric patient is different from adults due to differences in anatomy and physiology of the pediatric patient. Tachycardia is an early sign. While anxiety and pain can cause tachycardia, you must look for occult injury. Abdominal bleeding is not readily apparent on the scene.

REFERENCES

CHAPTER 10

Pediatric Head Trauma

There are no major changes in the approach to the management of traumatic brain injury (TBI) in the pediatric patient. Focus should remain on ensuring good oxygenation and perfusion, which reduces the incidence of secondary brain injury.
CHAPTER 11

Pediatric Spinal Trauma

There has been much written recently about changes in how we manage spinal trauma in the adult patient. Spinal motion restriction (SMR) in the adult is applied on those patients who have indicators for spinal injury. Due to differences in anatomy and physiology, it is difficult to perform the same level of assessment in pediatric patients.

UPDATES

1. Spinal precautions (SMR) should be observed for any child with an altered mental status, focal neurologic deficits, or normal mental status and no neurologic complaints, but with complaints of neck pain or decreased neck mobility.

2. For children with risk factors for spinal injury, utilize SMR during patient movement. A cervical collar may be used as long as the appropriate size is available. Place it carefully on the child. If an appropriately sized collar is not available (especially in children less than 1 year of age), towels may be used to restrict the child’s neck motion while maintaining the neutral position (Refer to Fig. 11 in the text). If the child has altered mental status, compromised ABCs, or cannot move themselves to the ambulance stretcher, the child should be secured to an extrication device (e.g., longboard) to limit spinal motion during patient movement. Padding should be used under the shoulders and neck to bring the cervical spine into alignment. The extrication device should be secured according to NHTSA Guidelines for Safe Transport. If an extrication device is not used, than the child should be secured to the mattress of the ambulance with/without a child restraint per NHTSA Guidelines for Safe Transport. Once you have secured the body, stabilize the head using a head motion restriction device, towel rolls, or whatever is available.

3. If necessary for patient resuscitation or movement, secure the child to an extrication device (long spineboard) using padding under the shoulders and neck to offset any possible cervical spine flexion. Always ensure that the child’s neck is in the neutral position, regardless of how the child is secured. If the car seat is not damaged and the child has no signs of neurologic injury or ABC compromise, you may transport the child in the car seat.

4. Carefully evaluate the chest and abdomen for any DCAP-BTLS. Substantial (surgical or life-threatening) injury to the torso has been shown to be associated with spine injury in children. This should not only raise the suspicion of a visceral injury, but also suggest possible cervical, thoracic or lumbar spinal trauma.
REFERENCES

CHAPTER 13
Extremity Trauma

UPDATES

1. While extremity trauma is common in children who are active, the incidence of Non Accidental Trauma (NAT) is increasing. Be alert to clues at the scene that an adult or adolescent may have been involved in causing the injury. Multiple visits to the same residence for pediatric trauma, injury patterns that do not match the child’s capabilities, or stories that differ between the child and adult need to be reported.

2. Because even what appears to be a relatively small amount of blood can cause hypovolemic shock in a small child, active or ongoing significant bleeding should be controlled promptly. A tourniquet should be considered early in arterial bleeding or amputation with ongoing bleeding to limit continued blood loss. It should also be an early consideration in children with ongoing significant bleeding not promptly managed with a pressure dressing. As always, children with evidence of shock should be rapidly transported after the ITLS Primary Survey.

3. While backboard use is being reevaluated in many EMS systems, backboards are still an option to splint an unstable pelvic fracture or a hip/femur fracture. Alternatively, in pelvic fracture, a pelvic wrap or sheet can be used, depending on the child’s size. In femur fracture (not hip), a properly sized traction splint may be used, and use of the backboard may help stabilize the traction splint and limit painful movement. If using a backboard, pad for comfort when appropriate.

REFERENCES

CHAPTER 14
Pediatric Burns

UPDATES

Burn Classification
The classification of burns can be simplified to minor, moderate and severe. A classification of “high risk burns” are those of full thickness in a child, or burns of the hands, face, foot or genitals.

Be alert that burns may be non-accidental trauma.

Cyanide Poisoning
Hydroxocobalamin is recommended for treatment of cyanide poisoning. Exposure to smoke in a confined space is the best predictor of smoke inhalation.

REFERENCES

UPDATES

Definitions
Drowning is defined as a process resulting in primary respiratory impairment from submersion/immersion in a liquid medium. A liquid/air interface is present at the entrance of the victim’s airway, preventing the breathing of air. The victim may live or die, but whatever the outcome, they have been involved in a drowning incident.

Old terms no longer used include: wet versus dry drowning, near drowning, and secondary drowning.

Note that there is no difference between drowning in freshwater versus saltwater.

The immersion syndrome is a form of drowning caused by sudden exposure to very cold water (≤20°C or 68°F) that may be due to a vagal induced dysrhythmia. The two most commonly precipitated arrhythmias are asystole and ventricular fibrillation.

Statistics
In 2012, it is estimated 372,000 people died from drowning worldwide. Drowning is the 3rd leading cause of unintentional injury death. Globally, the highest rates are among 1- to 4-year-olds, followed by 5- to 9-year-olds.

Drowning is found in all economies and regions; however, it accounts for 91% in low-middle income countries. Over 50% occur in the western Pacific and southeast Asia regions.

Children 5 to 14 years old die from drowning more frequently than any other cause. In Australia, drowning is the leading cause of death in children 1 to 3 years old. In China, it is the leading cause of death in children 1 to 3 years old, and in the United States, it is the 2nd leading cause in children 1 to 14 years old.

REFERENCES
CHAPTER 16

Pediatric Traumatic Cardiopulmonary Arrest

There are no major changes. Emphasis is on the identification of treatable causes of traumatic cardiac arrest. Remember that most cardiac arrests in children are respiratory based.
CHAPTER 19
Trauma in the Newborn

UPDATES

Neonatal Resuscitation

The Golden Minute
The Golden Minute (60-second) mark includes completing initial steps, reevaluating, and beginning ventilation if required. This 60-second mark emphasizes the importance of avoiding unnecessary delay in the initiation of ventilation, the most important step for successful resuscitation of the newly born infant who has not responded to the initial steps.

Temperature Management
Temperature should be recorded as a predictor of outcomes and as a quality indicator. The temperature of newly born non-asphyxiated infants is to be maintained between 36.5°C and 37.5°C after birth through admission and stabilization.

Initial Stabilization and Assessment
When completing the initial stabilization and assessment, the assessment of amniotic fluid is omitted. The order of the assessment questions has changed to:
1. Term gestation?
2. Good tone?
3. Breathing or crying?

Approach to the Newly Born Infant with an Abnormal Initial Assessment

Airway
The airway should always be the top priority.

Suctioning
Suctioning immediately following birth (including suctioning with a bulb syringe) is reserved for babies who have obvious obstruction to spontaneous breathing or who require PPV.

Meconium
If the infant born through meconium-stained amniotic fluid presents with poor muscle tone and inadequate breathing efforts, the initial steps of resuscitation should be completed under a radiant warmer.

PPV should be initiated if the infant is not breathing or the heart rate is less than 100/min after the initial steps have been completed.

Routine intubation for tracheal suctioning in this setting is not suggested because there is insufficient evidence to continue recommending this practice.
Breathing:
Spontaneously breathing preterm infants with respiratory distress may be supported with continuous positive airway pressure initially rather than with routine intubation for administering PPV.

Preterm O₂ Resuscitation
Resuscitation of preterm newborn less than 35 weeks gestation with high O₂ (65% or greater) is not recommended.

Monitoring Fetal Heart Rate
The use of a 3-lead ECG for rapid and accurate measurement of the newborn’s heart rate may be reasonable.

Alternative to ET Intubation
A laryngeal mask airway (LMA) is recommended during resuscitation of term and preterm newborns, gestation at 34 weeks or more, and if tracheal intubation is unsuccessful or not feasible.

Discontinuing Resuscitation
If the Apgar score is 0 at 10 minutes of resuscitation and the heart rate is 0, ventilation may be discontinued. However, the decision to continue or discontinue must be individualized:
• Was the resuscitation optimal?
• Is there available advanced neonatal care?
• Is hypothermia present?
• Are there specific pre-delivery circumstances?
• Have the family’s wishes been expressed?

REFERENCES
Appendix A

REFERENCES

Appendix B

REFERENCES