The Arizona EPIC Project & Controversies in TBI Management

Amy Boise, NREMT-P, FP-C Lead Educator, EPIC Project University of Arizona

Contributions

Dr. Dan Spaite, MD, FACEP Dr. Ben Bobrow, MD, FACEP Bruce Barnhardt, RN, CEP John Tobin, CEP Amy Boise, NREMT-P, FP-C

*This project is funded by the NIH

*1R01NS071049-01A1 (Adults) *3R01NS071049-S1 (EPIC4Kids)

Impact of TBI

* Leading cause of death / disability worldwide

* □ In USA – TBI

 * 5.3 million Americans or 2% of the population have moderate to severe disability require long term assistance with daily activities

* DIRECT cost

\$60 billion/year (2000) cause of death / disability worldwide

Primary Brain Injury

Damage that occurs at the moment of impact
We can't fix it
Neuro-Surgeon can't fix it either

* Damage is already done

Secondary Brain Injury

Cocurs after the initial trauma
Caused By:
1) Systemic hypoxia
2) Poor CNS blood flow
Major impact in TBI outcome

Do EVERYTHING you can to **PREVENT** secondary brain injury

The Stakes Are High

A mild to moderate <u>primary</u> TBI can be converted into a severe TBI from <u>secondary</u> injury due to improper management

The ESSENCE of the Science

What happens in the first few minutes profoundly impacts outcome

The "H-Bombs" for TBI
Hypoxemia
Hypotension
Hyperventilation

The Science of the "H Bombs"

≻<u>Hypoxia</u>:

 Hypoxia in the field is <u>very</u> common 55% of patients with severe TBI

A <u>single</u> O₂ sat of <90% is <u>independently</u> associated with <u>at least</u> a doubling of mortality

One study: <u>*Tripled*</u> mortality

The Science of the "H Bombs"

Hypotension:

 A single episode of SBP < 90mmHg is independently associated with <u>at least</u> a doubling of mortality
 Repeated episodes: 800% increase in death

The Science of the "H Bombs"

Hyperventilation: (intubated pts)

 Hyperventilation is <u>independently</u> associated with <u>at least</u> a doubling of mortality

One study showed a <u>six-fold</u> increase

Why is Hyperventilation So Bad??

How could something that <u>decreases</u> ICP cause a six-fold <u>increase</u> in mortality?
The decreased ICP occurs <u>because of</u> profound cerebral vasoconstriction
All advantages gained from lower ICP are <u>overwhelmed</u> by the CNS ischemia

The Essence of the Guidelines

* <u>Prevent</u> and <u>aggressively</u> treat

hypoxia

* <u>Prevent</u> and <u>aggressively</u> treat

hypotension

* <u>Meticulously</u> prevent and <u>rapidly</u> correct hyperventilation

Paradigm Shift

*These are simple changes in the way we treat TBI patients

*Simple is not always easy

*These treatments change the way we have done business for years

Constant Focus is the key to changing these habits

The Arizona EPIC Project

The Excellence in Prehospital Injury Care (EPIC) Project is a unique effort to improve survival and neurologic outcome for victims of major TBI who are cared for by all Arizona EMS agencies

The Arizona EPIC Project

>An Arizona public health initiative:

- Implementing the nationally-vetted, evidence-based EMS TBI guidelines throughout the state
- Measuring the impact of implementation by linking EMS data with hospital data

Implementation of Brain Trauma Foundation (BTF) – TBI CARE Guidelines

Implementation of evidence based protocols takes a long time!

Intubation

* Numerous studies:

* Poorer outcomes in TBI patients intubated in the field

- * Severity-adjusted outcomes (field vs. ED ETI)
 - ***** Death: aOR 3.99
 - ***** Poor neuro outcome: aOR 1.61

* Moderate/severe functional impairment : aOR 1.92

Wang: Ann Emerg Med 2004;44:439-450.

* San Diego RSI Trial
* Field ETI vs. non-intubated EMS controls
* Risk of death: 24.2% vs. 33.0% (RI = 36.4%)
* Trial was terminated early by the DSMB due to increased mortality with RSI

Davis: J Trauma; 2003

*So...is ETI <u>bad</u> for TBI patients?

Many experts: ETI should be delayed until arrival at the ED

ETI is Bad???

*Studies showing worse outcomes with ETI

- * Stiell: CMAJ 2008;178:1141-52
- * Davis: J Trauma 2003;54:444-53
- * Davis: J Trauma 2005;58:933-9
- * Davis: J Trauma 2005;59:486-90
- * Denninghoff: West J Emerg Med 2008;9:184-9
- * Murray: J Trauma 2000;49:1065-70
- * Wang: Ann Emerg Med 2004;44:439-50
- * Wang: Prehosp Emerg Care 2006;10:261-71
- * Eckstein: Ann Emerg Med 2005;45:504-9
- * Bochicchio: J Trauma 2003;54:307-11
- * Arbabi: J Trauma 2004;56:1029-32

But....Wait a Minute!!!

*Studies showing better outcomes with ETI

- * Winchell: Arch Surg 1997;132:592-7
- * Klemen: Acta Anaesthesiol Scand 2006;50:1250-4
- * Warner: Trauma 2007;9:283-89
- * Davis: Resuscitation 2007;73:354-61
- * Davis: Ann Emerg Med 2005;46:115-22
- * Bulger: J Trauma 2005;58:718-23
- * Bernard: Ann Surg 2010;252:959–965

* <u>Randomized</u>: PM RSI Vs. ED intubation

* Meticulous ETCO₂ management post-ETI

* Favorable Neuro Outcome (GOS-E 5–8)
* PM RSI: 51% (80/157)
* ED ETI: 39% (56/142)
* aOR 1.28

EPIC-TBI Excellence in Prehospital Injury Care Traumatic Brain Injury Project

Bernard. Ann Surg; 2010

So...Why the Dramatic Differences in the Studies???

* The "Intubation-Hyperventilation Paradox"
* If done well, intubation has the <u>potential</u> to:
* Protect the airway
* Provide good ventilation and oxygenation
* Ironically...it also makes it <u>much easier</u> to:
* Over-ventilate
* Hyper-ventilate

Gaither, Spaite, Bobrow: Ann Emerg Med; 2012

Three Major Problems With Manual Ventilation

1. Hyperventilation:

-Bagging *faster* than one breath every six seconds (10 bpm) or ETCO2 <35

-Even *moderate* hyperventilation kills brain cells and causes *major*, *debilitating morbidity or death*

Three Major Problems With Manual Ventilation

Over-ventilation: Squeezing the bag too 2. hard/too aggressively/too deeply \rightarrow -High airway pressure \rightarrow -Increased JVP and ICP -Decreases venous return...decreasing cardiac output and cerebral perfusion -Lung damage \rightarrow ARDS

Three Major Problems With Manual Ventilation

3. *Inadvertent Ventilatory Inattentiveness*:

-A recent landmark discovery:

-*Every* healthcare provider has this neuro-psychiatric disorder

Inadvertent Ventilatory Inattentiveness (IVI)

The syndrome: During manual ventilation... without <u>meticulous</u> prevention...<u>everyone</u> inevitably gets distracted and hyper/overventilates.

Studies: Typical rate: 24-40+ bpm
 Our serum epi level is higher than the patient's!

Inadvertent Ventilatory Inattentiveness (IVI)

Studies show we cannot "wing it" *Without adjuncts...<u>everyone</u> manually ventilates...wrong * Even anesthesiologists and RTs *****Three things are *unavoidable*: * Death, Taxes...and IVI \star Hyperventilation is still the leading cause of secondary brain injury

Adjuncts for Preventing Hyperventilation

*Cadence Device*Visual Rate Timer 10 bpm 1 sec breath

Adjuncts for Preventing Hyperventilation * Pressure-controlled bag * Helps prevent hyper <u>and</u> over-ventilation * Will also soon be available for EPIC agencies

Adjuncts for Preventing Hyperventilation

Continuous ETCO₂ monitoring
 Target: 40 mmHg
 Range: 35-45 mmHg

EPIC Plan to Prevent IVI: The "Ventilator EMT" *The V-EMT's job:

*Maniacal about ventilatory rate/depth

*Meticulously uses ventilatory adjuncts

*Should not be disturbed

*****Only function is ventilation

Optimal Ventilation for TBI

* <u>Best</u>:

- * Initial cadence device/PC bag followed by...
- * ETCO₂ monitoring to modulate ventilation rate <u>asap</u> followed by...
- * Mechanical ventilator asap @ 7cc/kg

* <u>Next Best</u>:

- * Cadence device/PC bag
- * ETCO₂ monitoring

* Acceptable: Cadence device/PC bag

If You Choose To Intubate

*You take on the responsibility to meticulously monitor ventilations

If you don't meticulously monitor ventilations:

Your ALS airway is actually WORSE than a BLS airway

Caution to ALL Intubators

* 1850 ED intubations

* # of attempts vs. complication rates

Attempt:
 Attempts:
 Attempts:
 Attempts:
 Attempts:

14.6% (197/1349) 46.3% (157/339) 61.3% (68/111) 72.5% (37/51)

* 2nd attempt <u>TRIPLES</u> complication rates

- * Most common complications:
 - Hypoxia and aspiration
 - Markedly increases mortality in TBI

* "First Pass Success" \rightarrow BLS or rescue quickly

If You Choose To Intubate

* Our work is not done once intubation is complete!

* There is great chance of harming our patients when we intubate and hyperventilate

* There is great potential benefit to our patients with intubation and proper ventilation

EPIC Lesson Learned

Definitive Care

The "Definitive" Care of TBI <u>Begins</u> in the Field?

- The Classic Mantra: "Trauma is a surgical disease"
- ➢ So…how can EMS <u>begin</u> "Definitive Care"? → The "Neuronal Clock" is so short!!!
 - Lost neurons don't come back no matter how spectacular the neurosurgeon is
 - Proper EMS care is powerfully <u>synergistic</u> with subsequent surgical and critical care
 - "One live brain..."

EPIC Truth in 02

Isn't Too Much Oxygen Toxic???

***EPIC** Guideline:

* High-flow NRB on <u>anyone</u> who has a positive LOC or has an altered level of consciousness.

 * "Pre-oxygenation" is very effective at *preventing* hypoxia in patients who *subsequently* deteriorate
 * Acute epidural

* Keep TBI patients on HF/NRB or...if intubated, <u>100%</u> FIO₂ until arrival at the TC

EPIC numbers

- * We use GCS as a primary determinate of TBI
- * What percentage of patients have a GCS of 15 then later deteriorate?
- * OVER HALF!!! 52%

Being at "*more than 100%*" is a preemptive strike on hypoxia
 Give the patient "BREATHING ROOM"

EPIC Evidence

★ Theoretical risk vs. <u>established</u> evidence →
 ★ Hypoxia is disastrous
 ★ Hypoxia is very common

Strongly emphasize high-flow oxygen

Full Pre-Oxygenation & Time

Glucose

What About Too Much Glucose???

* Isn't *hyper*glycemia bad for neuro outcomes?

Should we give less glucose when they are hypoglycemic?

* EBG: Treat BG <70 with full amp of D50

What About Too Much Glucose???

* Evidence is from in-hospital studies:
* Hyperglycemia in poorly-controlled diabetics—<u>Day</u>s
* Brief episodes of hyperglycemia
* Impact in TBI is unknown
* Theoretical risk vs. <u>established</u> evidence ->
* Hypoglycemia is bad for neurons

EPIC Perfusion

Blood Pressure

Management of Blood Pressure

* The Guideline

When patient even has the <u>potential</u> for TBI:
 Start at least one IV
 Carefully monitor BP

* Treatment of hypotension:

- \star Any SBP <90 mmHg \rightarrow Initial bolus 1L NS/LR
- * Continue *aggressive* fluid resuscitation if hypotension not corrected
- ★ Follow initial boluses with sufficient rate to keep SBP ≥90

Multi-System Trauma With TBI

*Multisystem Trauma:

* Will fluids increase internal bleeding if it hasn't been controlled yet???

* "Permissive hypotension"??* Literature: Penetrating torso wounds

Serious about Sedation

Sedation

Should TBI Patients be Sedated

*Classic approach to TBI

* "You can't over-sedate a TBI"

*Assumption: We don't want them moving around or fighting or agitated...so...keep them snowed

Should TBI Patients be Sedated

*Problem:

* Every commonly-used sedative (both narcotics and benzos) are vasodilators
* Physiology of sedatives
* Decreased cardiac after-load
* Significantly decreased pre-load

Should TBI Patients be Sedated

*Vasodilation/hypotension are really bad *All commonly-used agents can cause hypotension ***BP** can PLUMMET when they are given in compensated shock * And you don't know who's got this!!! *****Reversing agents: **Work centrally in CNS Do NOT reverse vascular effects**

> Excellence in Prehospital Injury Care Traumatic Brain Injury Project

EPIC Evidence

Therapeutic Hyperventilation

"Therapeutic Hyperventilation"

What about patients with cerebral herniation?

Cerebral Herniation

tentorium

herniation

Cerebral Herniation

*It's <u>RARE</u> in the prehospital environment

*It has a very bad prognosis

*Inability to confirm in the field

Cerebral Herniation

*Most patients with <u>severe</u> TBI are <u>not</u> herniating

Real-world "translation":The worse the TBI, the faster we ventilate

Many more patients harmed than helped

*Two approaches to treatment:
*#1: EPIC recommendation:
*Based upon this information...

Don't Hyperventilate under any circumstance

* <u>Option #2</u>

If your local protocols/MD call for hyperventilation...<u>only</u> hyperventilate for <u>obvious, unequivocal</u> signs of herniation

* Administer <u>mild/moderate</u> hyperventilation
* Adults (>15): 20 bpm
* Children (2-14): 25 bpm
* Infants (0-24 mo.): 30 bpm

* NOTE:

These rates are <u>not</u> evidence-based, they are completely arbitrary!!!
* Like most EMS
* When in doubt, don't hyperventilate

*If ETCO₂ monitoring available and you are going to hyperventilate:

* Maintain at 28-31mmHg

* Avoid ETCO₂ <28mmHg
* It KILLS neurons!!!</pre>

Parting Thoughts

The EMS care of TBI patients REALLY matters

Parting Thoughts

Avoid the H-Bombs!

*Hypoxia *Hypotension *Hyperventilation

Proper EMS care can often help prevent

and make more of this

Special thanks to the EPIC Partners

OF ARIZONA.

Excellence in Prehospital Injury Care Traumatic Brain Injury Project

www.EPIC.Arizona.edu

Amy Boise NREMT-P, FP-C Lead Educator, EPIC Project University of Arizona

ABoise@email.arizona.edu